World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Topaz4: an Ocean-sea Ice Data Assimilation System for the North Atlantic and Arctic : Volume 9, Issue 2 (10/04/2012)

By Sakov, P.

Click here to view

Book Id: WPLBN0003986906
Format Type: PDF Article :
File Size: Pages 57
Reproduction Date: 2015

Title: Topaz4: an Ocean-sea Ice Data Assimilation System for the North Atlantic and Arctic : Volume 9, Issue 2 (10/04/2012)  
Author: Sakov, P.
Volume: Vol. 9, Issue 2
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany

Citation

APA MLA Chicago

Lisæter, K. A., Counillon, F., Korablev, A., Bertino, L., Oke, P. R., & Sakov, P. (2012). Topaz4: an Ocean-sea Ice Data Assimilation System for the North Atlantic and Arctic : Volume 9, Issue 2 (10/04/2012). Retrieved from http://www.worldebookfair.com/


Description
Description: Nansen Environmental and Remote Sensing Center, Bergen, Norway. We present a detailed description of TOPAZ4, the latest version of TOPAZ – a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003–2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation and the sea ice. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates – a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

Summary
TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

Excerpt
Antonov, J., Locarnini, R., Boyer, T., Mishonov, A., and Garcia, H.: World Ocean Atlas 2005 Volume 2: Salinity, NOAA Atlas NESDIS, 62, 2006.; Bentsen, M., Evensen, G., Drange, H., and Jenkins, A. D.: Coordinate transformation on a sphere using conformal mapping, Mon. Weather Rev., 127, 2733–2740, 1999.; Bertino, L. and Lisæter, K.: The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans, Journal of Operational Oceanography, 2008, 15–18, 2008.; Beszczynska-Möller, A., Woodgate, R. A., Lee, C., Melling, H., and Karcher, M.: A synthesis of exchanges through the main oceanic gateways to the {A}rctic {O}cean, Oceanography, 24, 82–99, 2011.; Bishop, C. H., Etherton, B., and Majumdar, S. J.: Adaptive sampling with the ensemble transform {K}alman filter. Part {I}: theoretical aspects, Mon. Wea. Rev., 129, 420–436, 2001.; Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88, 2002.; Dumont, D., Gratton, Y., and Arbetter, T.: Modeling the dynamics of the North Water polynya ice bridge, J. Phys. Oceanogr., 39, 1448–1461, 2009.; Bonavita, M., Torrisi, L., and Marcucci, F.: The ensemble K}alman filter in an operational regional {NWP system: preliminary results with real observations, Q. J. R. Meteorol. Soc., 134, 1733–1744, 2008.; Brasseur, P., Bahurel, P., Bertino, L., Birol, F., Brankart, J.-M., Ferry, N., Losa, S., Remy, E., Schröter, J., Skachko, S., Testut, C.-E., Tranchant, B., Van Leeuwen, P. J., and Verron, J.: Data assimilation for marine monitoring and prediction: T}he {MERCATOR operational assimilation systems and the MERSEA developments, Q. J. R. Meteorol. Soc., 131, 3561–3582, 2005.; Brusdal, K., Brankart, J., Halberstadt, G., Evensen, G., Brasseur, P., van Leeuwen, P. J., Dombrowsky, E., and Verron, J.: An evaluation of ensemble based assimilation methods with a layered OGCM, 40-41, 253–289, 2003.; Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the ensemble {K}alman filter, Mon. Wea. Rev., 126, 1719–1724, 1998.; Canuto, V., Howard, A., Cheng, Y., and Dubovikov, M.: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars, J. Phys. Oceanogr., 32, 240–264, 2002.; Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a data assimilation system, Q. J. R. Meteorol. Soc., 130, 2767–2786, 2004.; Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H.: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, CD-ROM. National Snow and Ice Data Center, Boulder, CO, USA, 1999.; Chassignet, E., Hurlburt, H., Smedstad, O., Halliwell, G., Hogan, P., Wallcraft, A., and Bleck, R.: Ocean prediction with the hybrid coordinate ocean model (HYCOM), Ocean Weather Forecasting, 413–426, 2006.; Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM ({HY}brid {C}oordinate {O}cean {M}odel) data assimilative system, J. Mar. Syst., 65, 60–83, 2007.; Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Br�nnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, �., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc., 137, 1–28, 2011.; Cummings, J., Bertino, L., Brasseur, P., Fukumori, I., Kamachi, M., Martin, M., Mogensen, K., Oke, P., Testut, C. E., Verron, J., and We

 

Click To View

Additional Books


  • Support to Oil Spill Emergencies in the ... (by )
  • Assimilating Globcolour Ocean Colour Dat... (by )
  • A New Parameterisation of Salinity Advec... (by )
  • Correlation Between Subsurface High-sali... (by )
  • A Practical Scheme to Introduce Explicit... (by )
  • Impact of Global Ocean Model Resolution ... (by )
  • Assimilation of Ocean Colour Data Into a... (by )
  • Implementation of Position Assimilation ... (by )
  • Role of Cabbeling in Water Densification... (by )
  • Extraction of Spatial-temporal Rules fro... (by )
  • Interannual Variations of Water Mass Pro... (by )
  • Deep Drivers of Mesoscale Circulation in... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.