World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Multifractal Properties of Embedded Convective Structures in Orographic Precipitation: Toward Subgrid-scale Predictability : Volume 20, Issue 5 (11/09/2013)

By Nogueira, M.

Click here to view

Book Id: WPLBN0003990163
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Multifractal Properties of Embedded Convective Structures in Orographic Precipitation: Toward Subgrid-scale Predictability : Volume 20, Issue 5 (11/09/2013)  
Author: Nogueira, M.
Volume: Vol. 20, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Barros, A. P., A. Mirand, P. M., & Nogueira, M. (2013). Multifractal Properties of Embedded Convective Structures in Orographic Precipitation: Toward Subgrid-scale Predictability : Volume 20, Issue 5 (11/09/2013). Retrieved from

Description: Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal. Rain and cloud fields produced by fully nonlinear idealized cloud resolving numerical simulations of orographic convective precipitation display statistical multiscaling behavior, implying that multifractal diagnostics should provide a physically robust basis for the downscaling and sub-grid scale parameterizations of moist processes. Our results show that the horizontal scaling exponent function (and respective multiscaling parameters) of the simulated rainfall and cloud fields varies with atmospheric and terrain properties, particularly small-scale terrain spectra, atmospheric stability, and advective timescale. This implies that multifractal diagnostics of moist processes for these simulations are fundamentally transient, exhibiting complex nonlinear behavior depending on atmospheric conditions and terrain forcing at each location. A particularly robust behavior found here is the transition of the multifractal parameters between stable and unstable cases, which has a clear physical correspondence to the transition from stratiform to organized (banded and cellular) convective regime. This result is reinforced by a similar behavior in the horizontal spectral exponent. Finally, our results indicate that although nonlinearly coupled fields (such as rain and clouds) have different scaling exponent functions, there are robust relationships with physical underpinnings between the scaling parameters that can be explored for hybrid dynamical-statistical downscaling.

Multifractal properties of embedded convective structures in orographic precipitation: toward subgrid-scale predictability

Kirshbaum, D. J., Bryan, G. H., Rotunno, R., and Durran, D. R.: The triggering of orographic rainbands by small-scale topography, J. Atmos. Sci,, 66, 1530–1549, 2007b.; Barros, A. P. and Lettenmaier, D. P.: Dynamic modeling of orographically induced precipitation, Rev. Geophys., 32, 265–284, 1994.; Barros, A. P., Kim, G., Williams, E., and Nesbitt, S. W.: Probing orographic controls in the Himalayas during the monsoon using satellite imagery, Nat. Hazards Earth Syst. Sci., 4, 29–51, doi:10.5194/nhess-4-29-2004, 2004.; Bindlish, R. and Barros., A. P.: Aggregation of digital terrain data using a modified fractal interpolation scheme, Comput. Geosci. (UK), 22, 907–917, 1996.; Corsin, S.: On the Spectrum of Isotropic Temperature Fluctuations in an isotropic Turbulence, J. Appl. Phys., 22, 469–473, 1951.; Cosma, S., Richard, E., and Miniscloux, F.: The role of small-scale orographic features in the spatial distribution of precipitation, Q. J. Roy. Meteor. Soc., 128, 75–92, 2002.; Deidda, R: Rainfall downscaling in a space-time multifractal framework, Water Resour. Res., 36, 1779–1794, 2000.; Kirshbaum, D. J., Rotunno, R., and Bryan, G. H.: The Spacing of Orographic Rainbands Triggered by Small-Scale Topography, J. Atmos. Sci., 64, 1530–1549, 2007a.; Deidda, R., Badas, M. G., and Piga, E.: Space-time scaling in high- intensity Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) storms, Water Resour. Res., 40, W02506, doi:10.1029/2003WR002574, 2004.; de Lima, M. I. P. and de Lima, J. L. M. P.: Investigating the multifractality of point precipitation in the Madeira archipelago, Nonlin. Processes Geophys., 16, 299–311, doi:10.5194/npg-16-299-2009, 2009.; Douglas E. M. and Barros, A. P.: Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United State, J. Hydrometeor., 4, 1012–1024, 2003.; Emanuel, K.-A.: Atmospheric Convection, Oxford University Press, New York, 1994.; Fuhrer, O. and Schär, C.: Embedded cellular convection in moist flow past topography, J. Atmos. Sci., 62, 2810–2828, 2005.; Fuhrer, O. and Schär, C.: Dynamics of Orographically Triggered Banded Convection in Sheared Moist Orographic Flows, J. Atmos. Sci, 64, 3542–3561, 2007.; Gupta, V. K. and Waymire, E. C.: A statistical analysis of mesoscale rainfall as a random cascade, J. Appl. Meteor., 32, 251–267, 1993.; Harris, D., Foufoula-Georgiou, E., Droegemeier K. K., and Levit, J. J: Multiscale Properties of a High-Resolution Precipitation Forecast, J. Hydrometeor., 2, 406–418, 2001.; Kirshbaum, D. J. and Durran, D. R.: Factors governing cellular convection in orographic precipitation, J. Atmos. Sci., 61, 682–698, 2004.; Kirshbaum, D. J. and Durran, D. R.: Atmospheric factors governing banded orographic convection, J. Atmos. Sci., 62, 3758–3774, 2005a.; Kirshbaum, D. J. and Durran, D. R.: Observations and modeling of banded orographic convection, J. Atmos. Sci., 62, 1463–1479, 2005b.; Kolmogorov, A. N.: Local structure of turbulence in an incompressible liquid for very large Reynolds numbers, Proc. Acad. Sci. USSR. Geochem Sect., 30, 299–303, 1941.; Kuo, H. L.: Perturbations of plane Couette flow in stratified fluid and origin of cloud streets, Phys. Fluids, 6, 195–211, 1963.; Lavallée, D., Lovejoy, S., Schertzer, D., and Ladoy, P.: Nonlinear variability and Landscape topography: analysis and simulation, Fractals in Geography, edited by: De Cola, L. and Lam, N., 158–192, PTR, Prentice Hall, 1993.; Lazarev, A., Schertzer, D., Lovejoy, S., and Chigirinskaya, Y.: Unified multifractal atmospheric dynamics tested in the tropics: part II, vertical scaling and generalized scale invariance, Nonlin. Processes Geophys., 1, 115–123, doi:10.5194/npg-1-115-1994


Click To View

Additional Books

  • Expectation-maximization Analysis of Spa... (by )
  • Extreme Event Return Times in Long-term ... (by )
  • Fractal Time Statistics of Ae-index Burs... (by )
  • Features of Fluid Flows in Strongly Nonl... (by )
  • Current Challenges for Pre-earthquake El... (by )
  • Kinetic Slow Mode-type Solitons : Volume... (by )
  • Dynamics of Large-amplitude Geostrophic ... (by )
  • Seismic Entangled Patterns Analyzed Via ... (by )
  • Forced Versus Coupled Dynamics in Earth ... (by )
  • Simulations of Nonlinear Harmonic Genera... (by )
  • Non-gaussian Statistics in Space Plasma ... (by )
  • Hybrid Variational-ensemble Assimilation... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.